ТЕЛОСОФИЯ: ТЕОРИЯ И ПРАКТИКА ЦЕЛЕВОЙ ДЕТЕРМИНАЦИИ
ВРЕМЯ, ВРЕМЯ, ВРЕМЯ...

Аномальные свойства ВОДЫ

Перейти вниз

Аномальные свойства ВОДЫ

Сообщение автор ARSEN в 2017-03-06, 19:12

«Знание-Сила», март, 2010. стр. 104.

Аномальные свойства воды

    Ученым давно были известны 66 необъяснимых свойств воды, отличающих ее от большинства других химических веществ, встречающихся в жидком состоянии. Объяснить эти свойства на основании лишь строения и химических параметров молекул воды ученые до последнего времени не могли. Секрет крылся в структуре, в которую самоорганизуются молекулы жидкой воды. Он долгое время оставался неразгаданным, так как изучить эту структуру теми же методами, что применяются для изучения строения твердых тел, практически невозможно.

 Команда Андерса Нильсона, ведущего специалиста Стенфордского центра синхротронного излучения, сумела преодолеть эти трудности благодаря новейшим методам изучения строения жидкостей с использованием мощного рентгеновского излучения, получаемого с помощью больших ускорителей элементарных частиц, называемых синхротронами. Один из использованных в работе синхротронов находится в Японии, а второй — в США.

Ученые выяснили, что существовавшие до сих пор представления о молекулярной структуре воды были неверными — оказалось, что ее молекулы формируют не одну структуру, а одновременно два типа структур, сосуществующих в жидкости вне зависимости от температуры. Один тип структуры формируется в виде сгустков примерно по 100 молекул, структура которых напоминает структуру льда. Второй тип структуры, окружающей сгустки, гораздо менее упорядочен.
    
 

    Увеличение температуры вплоть до точки кипения воды приводит к некоторому искажению структуры сгустков и уменьшению их количества и доминированию разупорядоченной структуры. «Этот процесс можно представить как танцевальный клуб, где часть людей сидит за столиками, отражая упорядоченную компоненту воды, а часть, находясь в толпе, непрерывно перемещается в танце. Увеличение температуры воды в этом случае можно сравнить с всеобщим поднятием настроения и ускорением музыки, когда люди начинают вставать из-за столов и присоединяться к танцующим, а часть пустующих столов и вовсе убирается для высвобождения места. Охлаждение — обратный процесс, когда танцпол заполняется столами, и за них присаживаются утомленные танцами гости клуба», — пояснил результаты работы Нильсон.

Это, в частности, объясняет нелинейную зависимость плотности воды от температуры — упорядоченные скопления молекул имеют меньшую плотность, чем неупорядоченные, и она мало меняется с изменением температуры, которую можно сравнить с постоянным размером столов, не зависящим от настроения собравшихся или громкости музыки в ресторане.

Рисунок А. Сарафанова

avatar
ARSEN
ГРОССМЕЙСТЕР
ГРОССМЕЙСТЕР


Вернуться к началу Перейти вниз

Re: Аномальные свойства ВОДЫ

Сообщение автор ARSEN в 2017-03-06, 19:41

Аномальные свойства воды


Первое аномальное свойство воды – аномалия точек кипения и замерзания: Если бы вода – гидрид кислорода – Н2О была бы нормальным мономолекулярным соединением, таким, например, как ее аналоги по шестой группе Периодической системы элементов Д.И. Менделеева гидрид серы Н2S, гидрид селена Н2Se, гидрид теллура Н2Те, то в жидком состоянии вода существовала бы в диапазоне от минус 90oС до минус 70oС. При таких свойствах воды жизни на Земле не существовало бы.

“Ненормальные” температуры плавления и кипения воды далеко не единственная аномальность воды. Для всей биосферы исключительно важной особенностью воды является ее способность при замерзании увеличивать, а не уменьшать свой объем, т.е. уменьшать плотность. Это вторая аномалия воды, которая именуется аномалией плотности. На это особое свойство воды впервые обратил внимание еще Г. Галилей. При переходе любой жидкости (кроме галлия и висмута) в твердое состояние молекулы располагаются теснее, а само вещество, уменьшаясь в объеме, становится плотнее. Любой жидкости, но не воды. Вода и здесь представляет собой исключение. При охлаждении вода сначала ведет себя как и другие жидкости: постепенно уплотняясь, она уменьшает свой объем. Такое явление можно наблюдать до +4°С (точнее до +3,98°С). Именно при температуре +3,98°С вода имеет наибольшую плотность и наименьший объем. Дальнейшее охлаждение воды постепенно приводит уже не к уменьшению, а к увеличению объема. Плавность этого процесса вдруг прерывается и при 0°С происходит резкий скачок увеличения объема почти на 10%! В это мгновение вода превращается в лед. Уникальная особенность поведения воды при охлаждении и образовании льда играет исключительно важную роль в природе и жизни. Именно эта особенность воды предохраняет от сплошного промерзания в зимний период все водоемы земли – реки, озера, моря и тем самым спасает жизнь.


В отличие от пресной воды морская вода при охлаждении ведет себя иначе. Замерзает она не при 0°С, а при минус 1,8-2,1°С – в зависимости от концентрации растворенных в ней солей. Имеет максимальную плотность не при + 4°С, а при -3,5°С. Таким образом она превращается в лед, не достигая наибольшей плотности. Если вертикальное перемешивание в пресных водоемах прекращается при охлаждении всей массы воды до +4°С, то в морской воде вертикальная циркуляция происходит даже при температуре ниже 0°С. Процесс обмена между верхними и нижними слоями идет непрерывно, создавая благоприятные условия для развития животных и растительных организмов.

Все термодинамические свойства воды заметно или резко отличаются от других веществ.

Наиболее важная из них – аномалия удельной теплоемкости. Аномально высокая теплоемкость воды делает моря и океаны гигантским регулятором температуры нашей планеты, в результате чего не происходит резкого перепада температур зимой и летом, днем и ночью. Континенты, расположенные вблизи морей и океанов, обладают мягким климатом, где перепады температуры в различные времена года бывают незначительными.
Мощные атмосферные потоки, содержащие огромное количество теплоты, поглощенное в процессе парообразования, гигантские океанические течения играют исключительную роль в создании погоды на нашей планете.


Аномалия теплоёмкости заключается в следующем: 
При нагревании любого вещества теплоемкость неизменно повышается. Да, любого вещества, но не воды. Вода – исключение, она и здесь не упускает возможности быть оригинальной: с повышением температуры изменение теплоемкости воды аномально; от 0 до 37°С она понижается и только от 37 до 100°С теплоемкость все время растет. В пределах температур, близких к 37°С, теплоемкость воды минимальна. Именно эти температуры – область температур человеческого тела, область нашей жизни. Физика воды в области температур 35-41°С (пределы возможных, нормально протекающих физиологических процессов в организме человека) констатирует вероятность достижения уникального состояния воды, когда массы кристаллической и объемной воды равны друг другу и способность одной структуры переходить в другую максимальная. Это замечательное свойство воды предопределяет равную вероятность течения обратимых и необратимых биохимических реакций в организме человека и обеспечивает “легкое управление” ими.


Общеизвестна исключительная способность воды растворять любые вещества. И здесь вода демонстрирует необычные для жидкости аномалии, и в первую очередь аномалии диэлектрической постоянной воды. Это связано с тем, что ее диэлектрическая постоянная (или диэлектрическая проницаемость) очень велика и составляет 81, в то время как для других жидкостей она не превышает 10. В соответствии с законом Кулона сила взаимодействия двух заряженных частиц в воде будет в 81 раз меньше, чем, например, в воздухе, где эта характеристика равна единице. В этом случае прочность внутримолекулярных связей уменьшается в 81 раз и под действием теплового движения молекулы диссоциируют с образованием ионов. Необходимо отметить, что из-за исключительной способности растворять другие вещества вода никогда не бывает идеально чистой.


Следует упомянуть еще об одном удивительной аномалии воды – исключительно высоком поверхностном натяжении. Из всех известных жидкостей только ртуть имеет более высокое поверхностное натяжение. Это свойство проявляется в том, что вода всегда стремится сократить свою поверхность. Некомпенсированные межмолекулярные силы наружного (поверхностного) слоя воды, вызванные квантовомеханическими причинами, создают внешнюю упругую пленку. Благодаря пленке многие предметы, будучи тяжелее воды, не погружаются в воду. Если, например, стальную иголку осторожно положить на поверхность воды, то иголка не тонет. А ведь удельный вес стали почти в восемь раз больше удельного веса воды. Всем известна форма капли воды. Высокое поверхностное натяжение позволяет воде иметь шарообразную форму при свободном падении.

Поверхностное натяжение и смачивание являются основой особых свойств воды и водных растворов, названого – капиллярностью. Капиллярность имеет огромное значение для жизни растительного, животного мира, формирования структур природных минералов и плодородия земли. В каналах, которые во много раз уже человеческого волоса, вода приобретает удивительные свойства. Она становится более вязкой, уплотняется в 1,5 раза, а замерзает при минус 80-70°С.

Причиной сверханомальности капиллярной воды являются межмолекулярные взаимодействия, тайны которых еще далеко не раскрыты.

Ученым и специалистам известна так называемая поровая вода. В виде тончайшей пленки она устилает поверхность пор и микрополостей пород и минералов земной коры и других объектов живой и неживой природы. Связанная межмолекулярными силами с поверхностью других тел, эта вода, как и капиллярная вода, обладает особой структурой.

Таким образом, аномальные и специфические свойства воды играют ключевую роль в ее многообразном взаимодействии с живой и неживой природой. Все эти необычные особенности свойств воды настолько “удачны” для всего живого, что делает воду незаменимой основой существования жизни на Земле.
avatar
ARSEN
ГРОССМЕЙСТЕР
ГРОССМЕЙСТЕР


Вернуться к началу Перейти вниз

Re: Аномальные свойства ВОДЫ

Сообщение автор ARSEN в 2017-03-07, 16:43

Физические свойства воды


Физические свойства в полной мере изложены во многих работах. Вода (Н2O) – простейшее устойчивое химическое соединение водорода с кислородом, бесцветная жидкость с температурой кипения 100 °С. Химическая формула воды такая простая: Н2О; Н–О–Н [1–8]. Размер одной молекулы воды составляет около 3 Å (ангстрем) или примерно 0,28 нм (нанометра).


Рис. 1. Схема строения 
молекулы воды


Рис. 2. Тетраэдрическая структура молекулы воды

Вода состоит из одного относительно большого атома кислорода и двух небольших атомов водорода, вокруг которого вращается облачко общих отрицательно заряженных электронов (рис. 1). Угол H–O–H молекулы H2O в газообразном и жидком виде колеблется от 104,5 до 109°.

Во льду все молекулы связаны между собой водородными связями. При этом четыре связи каждой молекулы локально организованы в тетраэдрическую структуру, четыре близлежащие молекулы располагаются в вершинах трехгранной пирамиды, в центре которой находится пятая молекула воды (рис. 2).

Положительно заряженное ядро атома кислорода, ввиду своей большой массы и заряда, сильнее притягивает к себе электронное облачко, оголяя при этом ядра водорода.

Три ядра в молекуле воды образуют равнобедренный треугольник с двумя протонами водорода в основании и кислородом в вершине. Расстояние O–H 0,9568 Å (0,1 нм); H–H – 1,54 Å (0,15 нм). Модель молекулы воды, предложенная Нильсом Бором [9], показана на рис. 3.

а б
Рис. 3. Строение молекулы воды, предложенное Н. Бором [9]:
а – угол между связями H–H; 
б – внешний вид электронного облака молекулы воды
Свойства воды в основном зависят от водородных связей. Из-за большой разности электроотрицательности атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку отрицательно поляризованного атома соседней молекулы. Благодаря этому каждый атом кислорода притягивается к атомам водорода других молекул и наоборот.

Каждая молекула воды может участвовать максимум в четырех водородных связях: два атома водорода – каждый в одной, а атом кислорода – в двух; в таком состоянии молекулы находятся в кристалле льда. При таянии льда часть связей рвется, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность ее растет, но при температуре выше 4 °С этот эффект становится слабее. При испарении рвутся все оставшиеся связи.

Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоемкость.

Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

Строение электронного облака молекулы воды таково, что во льду каждая молекула связана четырьмя водородными связями с ближайшими к ней молекулами, координационное число молекул в структуре льда равно четырем. О размере молекулы можно судить по величине расстояния между ближайшими молекулами во льду, составляющего 2,67 Å (0,267 нм). Соответственно молекуле воды можно приписать радиус равный 1,38 Å (0,138 нм).

Дипольный момент воды равен 1,87 Дебая. Электрический дипольный момент – векторная физическая величина, характеризующая, наряду с суммарным зарядом электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей.

Исследования показали, что в воде сохраняется ближняя упорядоченность, свойственная структуре льда. Следовательно, тенденция каждой молекулы воды к окружению четырьмя ближайшими молекулами и к образованию с ними водородных связей свойственна как жидкому, так и твердому состоянию.

Расстояние между ближайшими молекулами при плавлении льда изменяется от 2,76 Å (0,276 нм) до 2,90 Å (0,29 нм). Свойственное среднее расположение ближайших молекул ведет к очень рыхлой, ажурной структуре. Именно с этим связаны аномальные свойства воды.

Почти шарообразная молекула воды имеет заметно выраженную полярность, так как электрические заряды в ней расположены асимметрично. Каждая молекула является миниатюрным диполем с высоким дипольным моментом.

Полярность молекул, наличие в них частично некомпенсированных электрических зарядов создает группировки молекул – ассоциаты.

Полностью соответствует формуле Н2O лишь вода, находящаяся в парообразном состоянии. В температурном интервале от 0 до 100 °С концентрация отдельных (мономерных молекул) жидкой воды не превышает 1 %. Все остальные молекулы воды объединены в ассоциаты различной степени сложности, и их состав описывается общей формулой [Н2O]Х.

Причиной образования ассоциатов являются водородные связи. Они возникают между ядрами водорода одних молекул и электронными «сгущениями» у ядер кислорода других молекул воды.

Неравномерное распределение электрических зарядов приводит к тому, что молекула воды поляризуется, становится маленьким магнитиком.

В магнитном поле Земли молекулы воды, находящейся в жидком состоянии, собираются в некие нестабильные конструкции под действием притяжения разноименно заряженных полюсов. Нестабильность таких конструкций определяется слабостью водородных связей между молекулами воды, называемых иногда водородными мостиками.

Тетраэдрическая форма отдельной молекулы повторяется в кристаллической структуре льда. Возможно, определенную роль здесь играет то, что угол H–O–H молекулы H2O почти равен идеальному тетраэдрическому углу 109°, а молекулы воды, как мы знаем, объединяются с помощью водородных связей, которые они образуют именно в направлении O–H. Эти трехгранные пирамиды могут также объединяться в некую сверхструктуру. Во льду такая сложная трехмерная сверхструктура из тетраэдров простирается на весь объем (рис. 4).

Рис. 4. Структура Н2О льда

Льдообразная молекула воды содержит как простые молекулы воды, так и кластера льдообразных структур (рис. 5).

Рис. 5. Структура льдообразной воды
https://monographies.ru/en/book/section?id=7302

- Источник: 

https://monographies.ru/en/book/view?id=243
avatar
ARSEN
ГРОССМЕЙСТЕР
ГРОССМЕЙСТЕР


Вернуться к началу Перейти вниз

Re: Аномальные свойства ВОДЫ

Сообщение автор ARSEN в 2017-06-12, 11:10

Академик И. В. Петрянов-Соколов
Самое необычное вещество в мире

В этом (2007 — П. З.) году мы хотим рассказать вам, уважаемые читатели, о воде. Этот цикл статей так и будет называться: цикл воды. Наверное, нет смысла говорить о том, сколь важно это вещество для всех естественных наук и для каждого из нас. Не случайно многие пытаются спекулировать на интересе к воде, взять хотя бы нашумевший фильм „Великая тайна воды“, которые привлёк внимание миллионов людей. С другой стороны, нельзя упрощать ситуацию и говорить, что мы знаем о воде всё; это совсем не так, вода была и остаётся самым необычным веществом в мире. Чтобы в деталях рассмотреть особенности воды, нужен обстоятельный разговор. А начинаем мы его главами из замечательной книги основателя нашего журнала академика И.В. Петрянова-Соколова, которая вышла в издательстве „Педагогика“ в 1975 году. Эта книжка, кстати, вполне может служить образцом научно-популярного разговора крупного учёного с таким непростым читателем, как ученик средней школы.


Всё ли уже известно о воде?


Совсем ещё недавно, в 30-х годах нашего века, химики были уверены, что состав воды им хорошо известен. Но однажды одному из них пришлось измерить плотность остатка воды после электролиза. Он был удивлён: плотность оказалась на несколько стотысячных долей выше нормальной. В науке нет ничего незначительного. Эта ничтожная разница потребовала объяснения. В результате учёные открыли много новых больших тайн природы. Они узнали, что вода очень сложна. Были найдены новые изотопные формы воды. Добыта из обычной тяжёлая вода; оказалось, что она совершенно необходима для энергетики будущего: при термоядерной реакции дейтерий, выделенный из литра воды, даст столько же энергии, как 120 кг угля. Теперь во всех странах мира физики упорно и неустанно работают над решением этой великой задачи. А началось всё с простого измерения самой обычной, будничной и неинтересной величины — плотность воды была измерена точнее на лишний десятичный знак. Каждое новое, более точное измерение, каждый новый верный расчёт, каждое новое наблюдение не только повышает уверенность в знании и надёжности уже добытого и известного, но и раздвигает границы неведомого и ещё не познанного и прокладывает к ним новые пути.



Что же такое обыкновенная вода?


Такой воды в мире нет. Нигде нет обыкновенной воды. Она всегда необыкновенная. Даже по изотопному составу вода в природе всегда различна. Состав зависит от истории воды — от того, что с ней происходило в бесконечном многообразии её круговорота в природе. При испарении вода обогащается протием, и вода дождя поэтому отлична от воды озера. Вода реки не похожа на морскую воду. В закрытых озёрах вода содержит больше дейтерия, чем вода горных ручьёв. В каждом источнике свой изотопный состав воды. Когда зимой замерзает вода в озере, никто из тех, кто катается на коньках, и не подозревает, что изотопный состав льда изменился: в нём уменьшилось содержание тяжёлого водорода, но повысилось количество тяжёлого кислорода. Вода из тающего льда другая и отличается от воды, из которой лёд был получен.



Что такое лёгкая вода?


Это та самая вода, формулу которой знают все школьники — H216O. Но такой воды в природе нет. Такую воду с огромным трудом приготовили учёные. Она им понадобилась для точного измерения свойств воды, и в первую очередь для измерения её плотности. Пока такая вода существует только в нескольких крупнейших лабораториях мира, где изучают свойства различных изотопных соединений.



Что такое тяжёлая вода?


И этой воды в природе нет. Строго говоря, нужно было бы называть тяжёлой воду, состоящую только из одних тяжёлых изотопов водорода и кислорода, D218O, но такой воды нет даже и в лабораториях учёных. Конечно, если эта вода понадобится науке или технике, учёные сумеют найти способ, как её получить: и дейтерия, и тяжёлого кислорода в природной воде сколько угодно.


В науке и ядерной технике принято условно называть тяжёлой водой тяжеловодородную воду. Она содержит только дейтерий, в ней совсем нет обычного, лёгкого изотопа водорода. Изотопный состав по кислороду в этой воде соответствует обычно составу кислорода воздуха.


Ещё совсем недавно никто в мире и не подозревал, что такая вода существует, а теперь во многих странах мира работают гигантские заводы, перерабатывающие миллионы тонн воды, чтобы извлечь из неё дейтерий и получить чистую тяжёлую воду.



Много ли различных вод содержится в воде?


В какой воде? В той, что льётся из водопроводного крана, куда она пришла из реки, тяжёлой воды D216O около 150 г на тонну, а тяжелокислородной (H217O и H218O вместе) почти 1800 г на тонну воды. А в воде из Тихого океана тяжёлой воды почти 165 г на тонну.


В тонне льда одного из больших ледников Кавказа тяжёлой воды на 7 г больше, чем в речной воде, а тяжелокислородной воды столько же. Но зато в воде ручейков, бегущих по этому леднику, D216O оказалось меньше на 7 г, а H218O — на 23 г больше, чем в речной.


Тритиевая вода T216O выпадает на землю вместе с осадками, но её очень мало — всего лишь 1 г на миллион миллионов тонн дождевой воды. В океанской воде её ещё меньше.


Строго говоря, вода всегда и всюду разная. Даже в снеге, выпадающем в разные дни, разный изотопный состав. Конечно, отличие невелико, всего 1–2 г на тонну. Только, пожалуй, очень трудно сказать — мало это или много.



В чём же различие между лёгкой природной и тяжёлой водой?


Ответ на этот вопрос будет зависеть от того, кому он задан. Каждый из нас не сомневается, что с водой-то он знаком хорошо. Если каждому из нас показать три стакана с обычной, тяжёлой и лёгкой водой, то каждый даст совершенно чёткий и определённый ответ: во всех трёх сосудах простая чистая вода. Она одинаково прозрачна и бесцветна. Ни на вкус, ни на запах нельзя найти между ними никакой разницы. Это всё — вода. Химик на этот вопрос ответит почти так же: между ними нет почти никакой разницы. Все их химические свойства почти неразличимы: в каждой из этих вод натрий будет одинаково выделять водород, каждая из них при электролизе будет одинаково разлагаться, все их химические свойства будут почти совпадать. Оно и понятно: ведь химический состав у них одинаков. Это вода.


Физик не согласится. Он укажет на заметную разницу в их физических свойствах: и кипят и замерзают они при различных температурах, плотность у них разная, упругость их пара тоже немного различна. И при электролизе они разлагаются с разной скоростью. Лёгкая вода чуть быстрее, а тяжёлая — помедленнее. Разница в скоростях ничтожна, но остаток воды в электролизере оказывается немного обогащённым тяжёлой водой. Таким путём она и была открыта. Изменения в изотопном составе мало влияют на физические свойства вещества. Те из них, которые зависят от массы молекул, меняются заметнее, например скорости диффузии молекул пара.


Биолог, пожалуй, станет в тупик и не сразу сумеет найти ответ. Ему нужно будет над вопросом о различии между водой с разным изотопным составом ещё немало поработать. Совсем недавно все считали, что в тяжёлой воде живые существа не могут жить. Её даже мёртвой водой называли. Но оказалось, что если очень медленно, осторожно и постепенно заменять протий в воде, где живут некоторые микроорганизмы, на дейтерий, то можно их приучить к тяжёлой воде и они будут в ней неплохо жить и развиваться, а обычная вода для них станет вредной.



Сколько молекул воды в океане?


Одна. И этот ответ не совсем шутка. Конечно, каждый может, посмотрев в справочник и узнав, сколько в Мировом океане воды, легко сосчитать, сколько всего в нём содержится молекул H2O. Но такой ответ будет не вполне верен. Вода — вещество особенное. Благодаря своеобразному строению отдельные молекулы взаимодействуют между собой. Возникает особая химическая связь вследствие того, что каждый из атомов водорода одной молекулы оттягивает к себе электроны атомов кислорода в соседних молекулах. За счёт такой водородной связи каждая молекула воды оказывается довольно прочно связанной с четырьмя соседними молекулами.



Как же всё-таки построены молекулы воды в воде?


К сожалению, этот очень важный вопрос изучен ещё недостаточно. Строение молекул в жидкой воде очень сложно. Когда лёд плавится, его сетчатая структура частично сохраняется в образующейся воде. Молекулы в талой воде состоят из многих простых молекул — из агрегатов, сохраняющих свойства льда. При повышении температуры часть их распадается, их размеры становятся меньше.
Взаимное притяжение ведёт к тому, что средний размер сложной молекулы воды в жидкой воде значительно превышает размеры одной молекулы воды. Такое необычайное молекулярное строение воды обусловливает её необычайные физико-химические свойства.



Какова должна быть плотность воды?


Правда, очень странный вопрос? Вспомните, как была установлена единица массы — один грамм. Это масса одного кубического сантиметра воды. Значит, не может быть никакого сомнения в том, что плотность воды должна быть только такой, какая она есть. Можно ли в этом сомневаться? Можно. Теоретики подсчитали, что если бы вода не сохраняла рыхлую, льдоподобную структуру в жидком состоянии и её молекулы были бы упакованы плотно, то и плотность воды была бы гораздо выше. При 25°C она была бы равна не 1,0, а 1,8 г/см3.



При какой температуре вода должна кипеть?


Этот вопрос тоже, конечно, странен. Верно, при ста градусах. Это знает каждый. Больше того, именно температура кипения воды при нормальном атмосферном давлении и выбрана в качестве одной из опорных точек температурной шкалы, условно обозначенной 100°C. Однако вопрос поставлен иначе: при какой температуре вода должна кипеть? Ведь температуры кипения различных веществ не случайны. Они зависят от положения элементов, входящих в состав их молекул, в периодической системе Менделеева.


Если сравнивать между собой одинаковые по составу химические соединения различных элементов, принадлежащих к одной и той же группе таблицы Менделеева, то легко заметить, что чем меньше атомный номер элемента, чем меньше его атомный вес, тем ниже температура кипения его соединений. Вода по химическому составу может быть названа гидридом кислорода. H2Te, H2Se и H2S — химические аналоги воды. Если определить температуру кипения гидрида кислорода по положению его в периодической таблице, то окажется, что вода должна кипеть при –80°C. Следовательно, вода кипит приблизительно на сто восемьдесят градусов выше, чем должна кипеть. Температура кипения воды — это наиболее обычное её свойство — оказывается необычайным и удивительным.



При какой температуре вода замерзает?


Не правда ли, вопрос не менее странен, чем предыдущие? Ну кто же не знает, что вода замерзает при нуле градусов? Это вторая опорная точка термометра. Это самое обычное свойство воды. Но ведь и в этом случае можно спросить: при какой температуре вода должна замерзать в соответствии со своей химической природой? Оказывается, гидрид кислорода на основании его положения в таблице Менделеева должен был бы затвердевать при ста градусах ниже нуля.


Из того, что температура плавления и кипения гидрида кислорода — его аномальные свойства, следует, что в условиях нашей Земли жидкое и твёрдое состояния его также аномальны. Нормальным должно было бы быть только газообразное состояние воды.



Сколько существует газообразных состояний воды?


Только одно — пар. А пар тоже только один? Конечно нет, паров воды столько же, сколько существует различных вод. Водяные пары, различные по изотопному составу, обладают хотя и очень близкими, но всё же различными свойствами: у них разная плотность, при одной и той же температуре они немного отличаются по упругости в насыщенном состоянии, у них чуть-чуть разные критические давления, разная скорость диффузии.



Может ли вода помнить?


Такой вопрос звучит, надо признать, очень необычно, но он вполне серьёзен и очень важен. Он касается большой физико-химической проблемы, которая в своей наиболее важной части ещё не исследована. Этот вопрос только поставлен в науке, но ответа на него она ещё не нашла.


Вопрос в том, влияет или нет предыдущая история воды на её физико-химические свойства и возможно ли, исследуя свойства воды, узнать, что происходило с ней ранее, — заставить саму воду „вспомнить“ и рассказать нам об этом. Да, возможно, как это ни кажется удивительным. Проще всего это можно понять на простом, но очень интересном и необычайном примере — на памяти льда.
Лёд — это ведь вода. Когда вода испаряется — меняется изотопный состав воды и пара. Лёгкая вода испаряется хотя и в ничтожной степени, но быстрее тяжёлой.
При испарении природной воды состав изменяется по изотопному содержанию не только дейтерия, но и тяжёлого кислорода. Эти изменения изотопного состава пара очень хорошо изучены, и так же хорошо исследована их зависимость от температуры.


Недавно учёные поставили замечательный опыт. В Арктике, в толще огромного ледника на севере Гренландии, была заложена буровая скважина и высверлен и извлечён гигантский ледяной керн длиной почти полтора километра. На нём были отчётливо различимы годичные слои нараставшего льда. По всей длине керна эти слои были подвергнуты изотопному анализу, и по относительному содержанию тяжёлых изотопов водорода и кислорода — дейтерия и 18O были определены температуры образования годичных слоёв льда на каждом участке керна. Дата образования годичного слоя определялась прямым отсчётом. Таким образом была восстановлена климатическая обстановка на Земле на протяжении тысячелетия. Вода всё это сумела запомнить и записать в глубинных слоях гренландского ледника.


В результате изотопных анализов слоёв льда была построена учёными кривая изменения климата на Земле. Оказалось, средняя температура у нас подвержена вековым колебаниям. Было очень холодно в XV веке, в конце XVII века и в начале XIX. Самые жаркие годы были 1550 и 1930.


То, что сохранила в памяти вода, полностью совпало с записями в исторических хрониках. Обнаруженная по изотопному составу льда периодичность изменения климата позволяет предсказывать среднюю температуру в будущем на нашей планете.


Это всё совершенно понятно и ясно. Хотя и очень удивительна тысячелетняя хронология погоды на Земле, записанная в толще полярного ледника, но изотопное равновесие достаточно хорошо изучено и никаких загадочных проблем в этом пока нет.



Тогда в чём же состоит загадка «памяти» воды?


Дело в том, что за последние годы в науке постепенно накопилось много поразительных и совершенно непонятных фактов. Одни из них установлены твёрдо, другие требуют количественного надёжного подтверждения, и все они ещё ждут своего объяснения.


Например, ещё никто не знает, что происходит с водой, протекающей сквозь сильное магнитное поле. Физики-теоретики совершенно уверены, что ничего с ней при этом происходить не может и не происходит, подкрепляя свою убеждённость вполне достоверными теоретическими расчётами, из которых следует, что после прекращения действия магнитного поля вода должна мгновенно вернуться в прежнее состояние и остаться такой, какой была. А опыт показывает, что она изменяется и становится другой.


Из обычной воды в паровом котле растворённые соли, выделяясь, отлагаются плотным и твёрдым, как камень, слоем на стенках котельных труб, а из омагниченной воды (так её теперь стали называть в технике) выпадают в виде рыхлого осадка, взвешенного в воде. Вроде разница невелика. Но это зависит от точки зрения. По мнению работников тепловых электростанций, эта разница исключительно важна, так как омагниченная вода обеспечивает нормальную и бесперебойную работу гигантских электростанций: не зарастают стены труб паровых котлов, выше теплопередача, больше выработка электроэнергии. На многих тепловых станциях давно установлена магнитная подготовка воды, а как и почему она работает, не знают ни инженеры, ни учёные. Кроме того, на опыте подмечено, что после магнитной обработки воды в ней ускоряются процессы кристаллизации, растворения, адсорбции, изменяется смачивание… правда, во всех случаях эффекты невелики и трудно воспроизводимы. Но каким образом в науке можно оценить, что такое мало и что — много? Кто возьмётся это сделать? Действие магнитного поля на воду (обязательно быстротекущую) длится малые доли секунды, а „помнит“ вода об этом десятки часов. Почему — неизвестно. В этом вопросе практика далеко опередила науку. Ведь даже неизвестно, на что именно действует магнитная обработка — на воду или на содержащиеся в ней примеси. Чистой-то воды ведь не бывает.


„Память“ воды не ограничивается только сохранением последствий магнитного воздействия. В науке существуют и постепенно накапливаются многие факты и наблюдения, показывающие, что вода как будто бы „помнит“ и о том, что она раньше была заморожена. Талая вода, недавно получившаяся при таянии куска льда, как будто бы тоже отличается от той воды, из которой этот кусок льда образовался. В талой воде быстрее и лучше прорастают семена, быстрее развиваются ростки; даже как будто бы быстрее растут и развиваются цыплята, которые получают талую воду. Кроме удивительных свойств талой воды, установленных биологами, известны и чисто физико-химические отличия, например талая вода отличается по вязкости, по значению диэлектрической проницаемости. Вязкость талой воды принимает своё обычное для воды значение только через 3–6 суток после плавления. Почему это так (если это так), тоже никто не знает. Большинство исследователей называют эту область явлений „структурной памятью“ воды, считая, что все эти странные проявления влияния предыдущей истории воды на её свойства объясняются изменением тонкой структуры её молекулярного состояния. Может быть, это и так, но… назвать — это ещё не значит объяснить. По-прежнему в науке существует важная проблема: почему и как вода „помнит“, что с нею было.



Знает ли вода, что происходит в космосе?


Этот вопрос затрагивает область столь необыкновенных, столь таинственных, до сих пор совершенно непонятных, наблюдений, что они вполне оправдывают образную формулировку вопроса. Экспериментальные факты как будто бы установлены твёрдо, но объяснения для них пока ещё не найдено.


Поразительная загадка, к которой относится вопрос, была установлена не сразу. Она относится к малозаметному и как будто бы пустяковому явлению, не имеющему серьёзного значения. Это явление связано с самыми тонкими и пока непонятными свойствами воды, трудно доступными количественному определению, — со скоростью химических реакций в водных растворах и главным образом со скоростью образования и выпадения в осадок труднорастворимых продуктов реакции. Это тоже одно из бесчисленных свойств воды.


Так вот, у одной и той же реакции, проводимой в одних и тех же условиях, время появления первых следов осадка непостоянно. Хотя этот факт был давным-давно известен, химики на него внимания не обращали, удовлетворяясь, как это ещё часто бывает, объяснением „случайными причинами“. Но постепенно, по мере развития теории скоростей реакции и усовершенствования методики исследования, этот странный факт стал вызывать недоумение.


Несмотря на самые тщательные предосторожности в проведении опыта в совершенно постоянных условиях, результат всё равно не воспроизводится: то осадок выпадает сразу, то приходится довольно долго ждать его появления.
Казалось бы, не всё ли равно — выпадает осадок в пробирке за одну, две или через двадцать секунд? Какое это может иметь значение? Но в науке, как и в природе, нет ничего не имеющего значения.


Странная невоспроизводимость всё более и более занимала учёных. И наконец был организован и осуществлён совершенно небывалый эксперимент. Сотни добровольных исследователей-химиков во всех частях земного шара по единой, заранее разработанной программе одновременно, в один и тот же момент по мировому времени снова и снова повторяли один и тот же простой опыт: определяли скорость появления первых следов осадка твёрдой фазы, образующейся в результате реакции в водном растворе. Опыт продолжался почти пятнадцать лет, было проведено более трёхсот тысяч повторений.


Постепенно стала вырисовываться удивительная картина, необъяснимая и загадочная. Оказалось, что свойства воды, определяющие протекание в водной среде химической реакции, зависят от времени.


Сегодня реакция протекает совсем иначе, чем в тот же момент она шла вчера, и завтра она будет идти снова по-другому.


Различия были невелики, но они существовали и требовали внимания, исследования и научного объяснения.


Результаты статистической обработки материалов этих наблюдений привели учёных к поразительному выводу: оказалось, что зависимость скорости реакции от времени для разных частей земного шара совершенно одинаковая.


Это означает, что существуют какие-то таинственные условия, изменяющиеся одновременно на всей нашей планете и влияющие на свойства воды.
Дальнейшая обработка материалов привела учёных к ещё более неожиданному следствию. Оказалось, что события, протекающие на Солнце, каким-то образом отражаются на воде. Характер реакции в воде следует ритму солнечной активности — появления пятен и вспышек на Солнце.


Но и этого мало. Было обнаружено ещё более невероятное явление. Вода каким-то необъяснимым путём отзывается на то, что происходит в космосе. Была установлена чёткая зависимость от изменения относительной скорости Земли в её движении в космическом пространстве.


Таинственная связь воды и событий, происходящих во Вселенной, пока необъяснима. А какое значение может иметь связь между водой и космосом? Никто ещё не может знать, насколько оно велико. В нашем теле около 75% воды; на нашей планете нет жизни без воды; в каждом живом организме, в каждой его клеточке протекают бесчисленные химические реакции. Если на примере простой и грубой реакции подмечено влияние событий в космосе, то пока даже и представить себе нельзя, как велико может быть значение этого влияния на глобальные процессы развития жизни на Земле. Наверное, будет очень важной и интересной наука будущего — космобиология. Одним из её главных разделов станет изучение поведения и свойств воды в живом организме.



Все ли свойства воды понятны учёным?


Конечно нет! Вода — загадочное вещество. До сих пор учёные не могут ещё понять и объяснить очень многие её свойства.
Можно ли сомневаться, что все подобные загадки будут успешно разрешены наукой. Но будет открыто немало новых, ещё более удивительных, загадочных свойств воды — самого необыкновенного вещества в мире.


http://zagopod.com/blog/43771400238/Akademik-I.-V.-Petryanov-Sokolov:--Samoe-neobyichnoe-veschestvo-
avatar
ARSEN
ГРОССМЕЙСТЕР
ГРОССМЕЙСТЕР


Вернуться к началу Перейти вниз

Re: Аномальные свойства ВОДЫ

Сообщение автор ARSEN в 2017-06-17, 23:24

Академик И. В. Петрянов-Соколов
 
Вода во Вселенной
 
Разве в космосе вода есть?

Да, оказывается, вода есть в космическом простран­стве. Совсем недавно (в 1970 г.) астрофизики с помо­щью радиотелескопа обнаружили идущие к нам из кос­моса странные короткие радиоволны — длиной 1,35 см. Оказалось, что это излучение исходит от загадочных гигантских облаков, расположенных в нашей Галак­тике в созвездии Ориона, Кассиопеи и в некоторых дру­гих созвездиях.

Теоретический расчет показал, что такое излучение принадлежит... воде. Молекулы водяного пара погло­щают инфракрасную часть спектра света звезд и пере­ходят в возбужденное состояние. При этом возрастает уровень энергии их вращательного движения. Когда же молекулы снова возвращаются в основное состояние, то они начинают излучать энергию на волне 1,35 см. Водя­ные облака занимают в космосе огромные пространства: их размеры в разных созвездиях колеблются от одной до сорока астрономических единиц, а единица рассто­яния у астрономов равна расстоянию от Земли до Солнца.

Но в космических просторах существует не только одна вода. Радиоастрономы ищут и находят все более и более сложные молекулы.

Уже найдены гидроксил, аммиак, формальдегид, окись углерода, циан, цианид водорода, и даже, как это ни удивительно, ученым удалось найти сложную моле­кулу с линейной углеродной цепью — ацетиленилцианид.

Это поразило ученых: такие углеродные цепи харак­терны для органических молекул, и они обнаружены впервые в космосе. В созвездии Стрельца существуют облака межзвездного газа — скопления ацетиленилцианида.

В присутствии воды в глубинах космоса должны идти химические процессы: даже только те химические соединения, которые уже там открыты, могут стать основой многочисленных химических реакций, веду­щих к образованию еще более многочисленных соеди­нений.

Таким образом, в наши дни учеными закладываются основы новой удивительной науки — химии космоса. Интересно будет познакомиться с ее будущими достиже­ниями...
 
И на других планетах вода есть?

На этот вопрос можно дать совершенно определен­ный и точный ответ: да, на других планетах также есть вода.


Советские ученые послали на планету Венера авто­матические химические лаборатории, которые непо­средственно в атмосфере планеты произвели химиче­ский анализ ее состава и передали результаты на землю по радио.

Пролетев 500 млн. км, первая из них — «Венера-4» произвела успешный спуск на парашюте в атмосфере «планеты загадок», выполнила уникальные изме­рения физико-химического состояния атмосферы: температуры, давления, плотности — и прямо на месте проанализировала химический состав газов. Это прои­зошло впервые в истории науки 18 октября 1967 г. Две последующие автоматические станции достигли Венеры в мае 1969 г. И подтвердили ранее полученные резуль­таты.

Было найдено, по уточненным данным, что на Венере «воздух» содержит:

углекислого газа — около 97%,
кислорода            — не более 0,1%,
азота                    — не более 2 %,
паров воды        — около 1%.


15 декабря 1970 г. межпланетная автоматическая станция «Венера-7» достигла поверхности планеты и передала на Землю сведения непосредственно с поверх­ности Венеры. Оказалось, что температура на планете превышает 470°С, а давление в 90 раз больше, чем на Земле.

Конечно, жидкой воды на Венере нет. Существова­ние известных нам форм жизни на Венере невозможно. Но вода там есть, это бесспорно.

Есть предположение, что вода существует и в атмос­фере Марса. В течение многих лет астрономы неодно­кратно наблюдали на Марсе загадочные яркие вспыш­ки. Они послужили неплохой завязкой сюжета для мно­гих фантастических романов. Но недавно эти таинственные вспышки были разгаданы. Советские ученые путем точного измерения углов световых лучей от этих вспышек с направлением на Солнце установили, что они вызваны отражением солнечных лучей от кристал­ликов льда, витающих в атмосфере Марса. Такие же явления часто наблюдаются и на Земле, когда в силь­ные морозы на небе появляются изображения ложных солнц. Так что очень может быть, вода есть и на Марсе. Совсем недавно это предположение получило веское подтверждение: следы водяного пара были обнаружены в атмосфере Марса спектроскопическим путем.

Астрофизики уже нашли воду и на Юпитере. Эта гигантская планета, пожалуй, с еще большим правом может быть названа планетой загадок. На роли воды в атмосфере Юпитера следует остановиться подробнее. Хотя в этом много таинственного и неразгаданного, но, может быть, именно тут наука приближается к реше­нию величайшей тайны — тайны зарождения жизни во Вселенной.

Раскаленное, хотя и недостаточно для начала тер­моядерных процессов, ядро Юпитера окружено оболоч­кой из металлического водорода. Снаружи планета покрыта  плотным  слоем  атмосферы  толщиной в десятки тысяч километров. Внешняя температура Юпи­тера очень низка — около -100°С. Атмосфера его состоит главным образом из водорода и гелия. Но в ней обнаружены также метан, аммиак, сероводород и... вода.

Самые удивительные и таинственные превращения протекают в той зоне атмосферы Юпитера, где условия сходны с земными — температура лежит в пределах от 0° до 100°С и давление не превышает двух-трех ат­мосфер.

Астрономы обнаружили, что на Юпитере непрерыв­но происходят чудовищные грозы и ураганы. Там должен идти снег и дождь, как и на Земле, из воды. Но там еще льются ливни из жидкого аммиака и сероводорода, там выпадает снег из аммиака. Но и снег и ливни никогда не достигают поверхности Юпитера (быть может, ее и не существует), снова возгоняются и вновь выпадают.

Эти чудовищные условия страшного мира гигант­ской планеты исследователи не раз пытались воссо­здать в своих лабораториях. Под действием электриче­ских разрядов и ионизирующего излучения в модель­ном юпитерианском «воздухе» из паров воды, аммиака и метана возникали многочисленные органические сое­динения, и среди них даже аминокислоты и углево­дороды.

Многие из образующихся химических соединений оказались яркоокрашенными, и их цвета по своему спе­ктральному составу сходны с окраской облачных полос на Юпитере. Многие ученые считают, что в атмосфере Юпитера существуют условия, благоприятные для воз­никновения жизни.
...
 

А на кометах вода есть?

Есть. Многие ученые считают, что голова кометы представляет собой твердое тело — «грязный лед», состоящий из смеси обыкновенного водяного льда и льда из застывших в космическом холоде газов аммиа­ка, метана. В этот лед вкраплены частицы твердого метеоритного вещества, состоящего главным образом из железа, кальция, кремния и многих других химических элементов.

Когда комета приближается к Солнцу, более легкие молекулы испаряются, образуя величественный хвост кометы. В спектре сияния хвоста кометы и были обна­ружены линии гидроксила, образующегося при распаде молекул воды.
 
Где еще во Вселенной может быть вода?


На звездах и на нашем Солнце она вряд ли может быть. Хотя там есть и водород и кислород, но при чудо­вищных температурах звезд молекулы воды не могут образоваться. Но астрономы установили, что у многих звезд во Вселенной, подобно тому как у Солнца, есть планетные системы.

Состав первичной атмосферы этих планет должен состоять из соединений водорода — наиболее обиль­ного элемента в космосе, больше всего должно быть молекул водорода — Н2, воды — Н2O, аммиака — NH3 и метана — СН4.
 
Вода есть во всех уголках Вселенной. Это бесспорно.
 
 
(Из книги: Петрянов И. В. Самое необыкновенное вещество в мире. М. «Педагогика», 1975)
avatar
ARSEN
ГРОССМЕЙСТЕР
ГРОССМЕЙСТЕР


Вернуться к началу Перейти вниз

Re: Аномальные свойства ВОДЫ

Сообщение автор Спонсируемый контент


Спонсируемый контент


Вернуться к началу Перейти вниз

Вернуться к началу


 
Права доступа к этому форуму:
Вы не можете отвечать на сообщения